Volume 14, Issue 4 (Journal of Soil and Plant Interactions 2023)                   2023, 14(4): 85-102 | Back to browse issues page


XML Persian Abstract Print


Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan.
Abstract:   (1284 Views)
Abstract
Drought is one of the most important abiotic stresses limiting the survival, growth, and production of plants in many regions of the world including Iran. Genetically, different species adopt different strategies to confront with drought. One of the mechanisms that plants have evolved to adapt to the environmental changes is stress memory. In this study, different genotypes of smooth bromegrass were evaluated to investigate the drought stress memory and drought stress tolerance based on a greenhouse pot experiment. Thirty three genotypes of smooth bromegrass were evaluated in three moisture environments: control (C), once drought-stressed (D2), and twice drought-stressed (D1D2) in a factorial arrangement according to the randomized complete blocks design with two replications. The dry matter yield decreased by 45 and 36% in the one-stress and two-stress treatments compared to the control, respectively. These results indicated the role of drought stress memory in modulating drought stress through the influence on forage dry yield and root dry weight. The root dry weight reduced in the once stress and twice stress conditions by 32 and 19%, respectively, compared to the control environment. This finding shows the significant effect of stress memory on the root growth. Based on the principal component analysis, superior genotypes were identified for future researches. Overall, the results suggested that smooth bromegrass is capable to activate some drought stress memory mechanisms related to morphological and root traits.

Background and Objective: Smooth bromegrass is particularly adapted to areas with medium and low annual precipitations and has a high drought tolerance when compared with the other grasses. Drought is one of the most important environmental factors with adverse effects on plant growth and development and affects all morphological, physiological, biochemical and metabolic aspects of plants (Farooq et al., 2009). Therefore, it is necessary to identify drought-tolerant genotypes (Saeidnia et al., 2017b). The term stress memory was first proposed by Trewavas (2003), as the plant's ability to access past experiences to better respond to future stresses. In open-pollinated species that are difficult to develop inbred lines, such as smooth bromegrass, the main breeding method is to create synthetic varieties that are obtained through the crossing of suitable parents. Besides, half-sib matting is one of the most common methods for obtaining genetic information such as estimating the additive effects and dominance of genes (Nguyen and Sleper, 
1983). Saidnia et al. (2017a) in a study on the genotypes of orchardgrass species found superior genotypes for hay production. They also examined the genetic parameters and heritability of dry matter yield and introduced the superior genotypes for the further researches. Hence, this study was designed to investigate stress memory and its effect on improving drought tolerance in a smooth bromegrass germplasm.

Methods: This research was carried out from February 2017 to June 2018 in the research greenhouse located at the Isfahan University of Technology as a pot experiment. A sandy loam soil with bulk density, field capacity, and wilting point of 1.57 g cm-3, and 12.5 and 7.4 %w/w, respectively, was used for filling the pots. The genetic materials included 33 genotypes of smooth bromegrass that were collected from different regions of the country and some foreign gene banks. The genotypes were investigated in three moisture environments including control (C), once drought-stressed (D2) and twice drought-stressed (D1D2) as a factorial experiment in the form of a randomized complete blocks design with two replications.

Results: The analysis of variance showed that drought treatments had a significant effect on most of the traits. A significant difference was observed between the genotypes regarding the measured traits indicating high genetic diversity among the genotypes. The secondary drought stress significantly reduced most of the traits. The dry matter yield decreased by 45 and 36% in the once-stress and twice-stress treatments compared to the control, respectively. These results indicated the role of drought stress memory through the effect on dry yield of forage and root dry weight. Also, the root dry weight was reduced by 32 and 19% in the conditions of one stress and two stress compared to the control environment, respectively, which shows the significant effect of stress memory on the root system. Multivariate analysis showed that under the twice stress condition compared to the other two moisture environments, the relationships of the traits have undergone severe changes, which is a confirmation of the effect of initial stress and stress memory.

Conclusions: This research indicated a high genetic diversity among the smooth bromegrass genotypes in terms of stress memory responses, which can be used in the selection methods. For example, the means of dry matter yield and root dry weight decreased to a lesser extent when grown in the presence of twice drought stress, than once drought stress. This finding shows that the mechanisms of the stress memory related to morphological and root traits in this plant are activated by applying preliminary mild drought stress and help the plant to have a smaller decrease in growth. Based on the principal component analysis, superior genotypes were identified for future research. The results of this research can be used in breeding programs and future genetic research. It is also suggested that suitable genotypes be studied more in field conditions over several years.

References:
1. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A., 2009. Plant drought stress: effects, mechanisms and management. In: Alberola, C., Debaeke, P., Lichtfouse, E., Navarrete, M., Véronique, S. (Eds.), Sustainable Agriculture. Springer Dordrecht. pp. 153–188.
2. Nguyen, H.T., Sleper, D.A., 1983. Theory and application of half-sib matting in forage grass breeding. Theor. Appl. Genet. 64, 18796.
3. Saeidnia, F., Majidi, M.M., Mirlohi, A., 2017a. Genetic analysis of stability in poly­crossed populations of orchardgrass. Crop Sci. 57, 28282836.
4. Saeidnia, F., Majidi, M.M., Mirlohi, A., Manafi, M., 2017b. Productivity, persistence and traits related to drought tolerance in Smooth Bromegrass. Plant Breeding. 136, 270278.
5. Trewavas, A., 2003. Aspects of plant intelligence. Ann. Bot. London. 92, 1–20.

 
Full-Text [PDF 716 kb]   (634 Downloads)    


Type of Study: Research | Subject: Plant growth under stressful conditions
Received: 2023/09/19 | Accepted: 2024/01/3 | Published: 2024/03/12

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.